

Balanced Diet for a Disease-Free Life – How to Eat Healthy at Home & at Work?

Dr. Torsten Bohn

Group Leader Nutrition & Health Research (NutriHealth)

https://sites.lih.lu/nutrihealth-group/

Department of Population Health, LIH

torsten.bohn@lih.lu

Overview of Course (45')

I: Short Warm-up Quiz

II: Importance of Healthy Diet – Situation in LU?

III: A Deeper Look Into Diet & Disease

IV: Practical Aspects Regarding Diet – at Home & at Work

V: Dietary Supplements – do I Need those ?

VI: Short Summary

I - Warm-up Quiz

How many adult persons in LU are having obesity (BMI>30 kg/m²)?

a) 10%

b) 23%

c) 16%

d) 28%

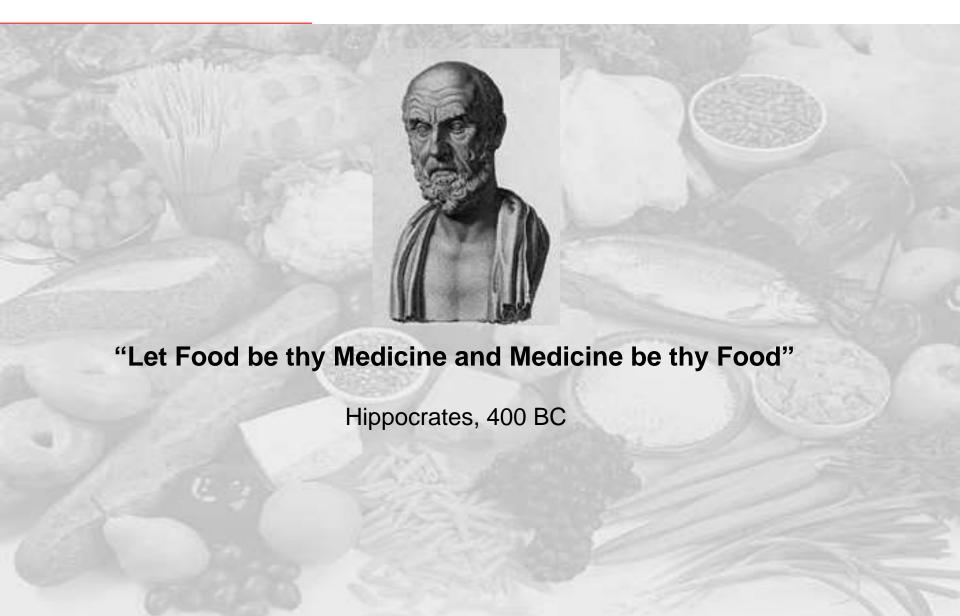
What is the contribution of diet to healthy living (long lifespan)?

- a) ~10% b) ~25%
- $c) \sim 50\%$

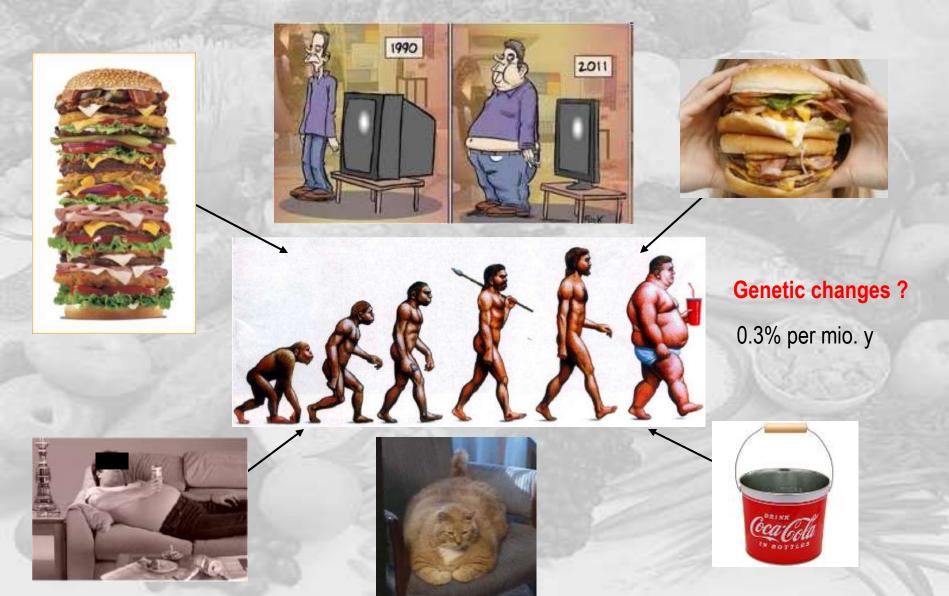
How many fruits & vegetables should you eat?

a) one apple a day

b) 2 portions/d


c) 3 portions/d

d) 5 portions/d


Vegetarians...

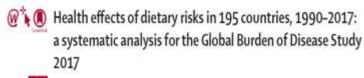
- a) less often die of cardiovascular disease
- b) have lower BMI (vs. omnivores)
- c) have nevertheless same all-cause mortality than omnivores

Development toward Couch-Potato Existance?

Are we doomed ???

WHO & other Expert Commissions

WHO: insufficient fruit/vegetable consumption:

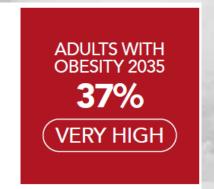

31% ischemic heart disease 19% gastro-intestinal cancer 11% stroke

Globally:

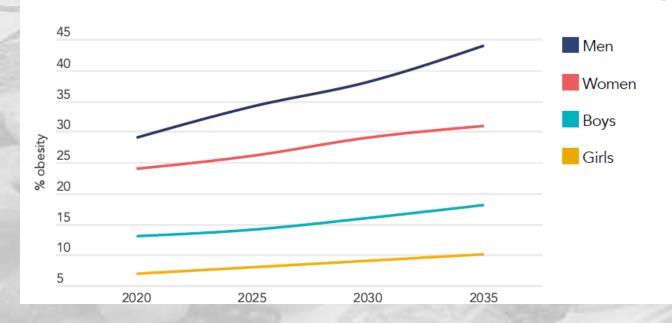
- Na: 3 mio. deaths, 70 mio. DALYs,
- Wholegrain: 3 mio. deaths 82 mio. DALYs
- Fruit: 2 mio. deaths, 65 mio. DALYs

(IHD: 180 mio. DALYs,WHO)

Oa GRO 2017 Det Callaboration*


Summar Parkersum

2006-282-1898-74 Background Suboptimal diet is an important preventable risk factor for non-communicable diseases [NCDs]; however,


Overweight & Obesity

Luxembourg

PROJECTED TRENDS IN THE PREVALENCE OF OBESITY (BMI ≥30kg/m²)

OECD, World Obesity Atlas 2023 & 2024

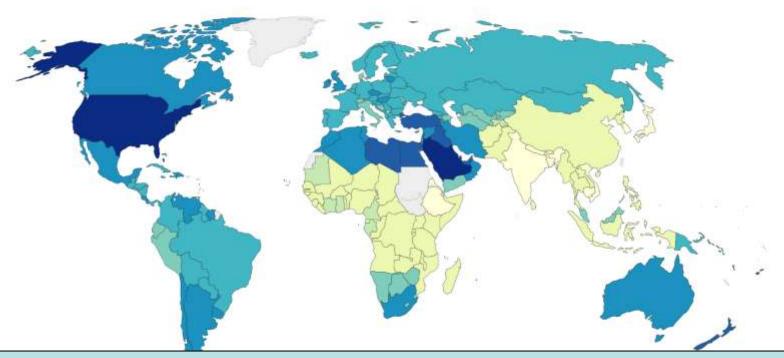
ANNUAL INCREASE IN ADULT OBESITY 2020–2035

2.3%

HIGH

OVERWEIGHT IMPACT ON NATIONAL GDP 2035

1.5%


HIGH

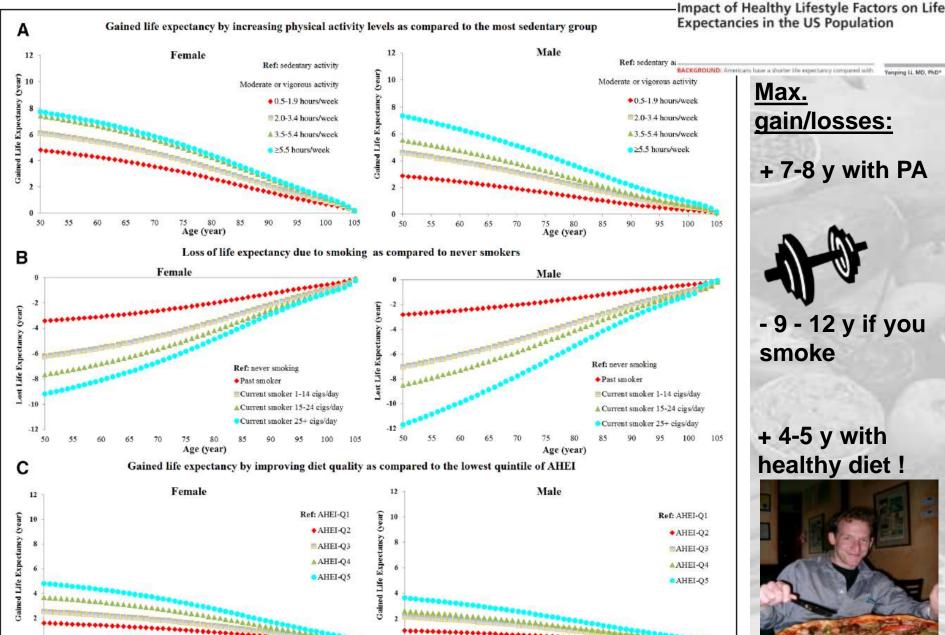
Not only a problem of Developed Countries:

Our World in Data

Obesity is defined as having a body-mass index (BMI) equal to or greater than 30. BMI is a person's weight in kilograms divided by his or her height in metres squared.

First time: more overweight than underweight (2,300 mio. vs. 850 mio., 2015)

No data 0% 5% 10% 15% 20% 25% 30% 35% >40%


Source: WHO, Global Health Observatory

Factors other than diet?

OurWorldinData.org/obesity • CC BY

Age (year)

Circulation

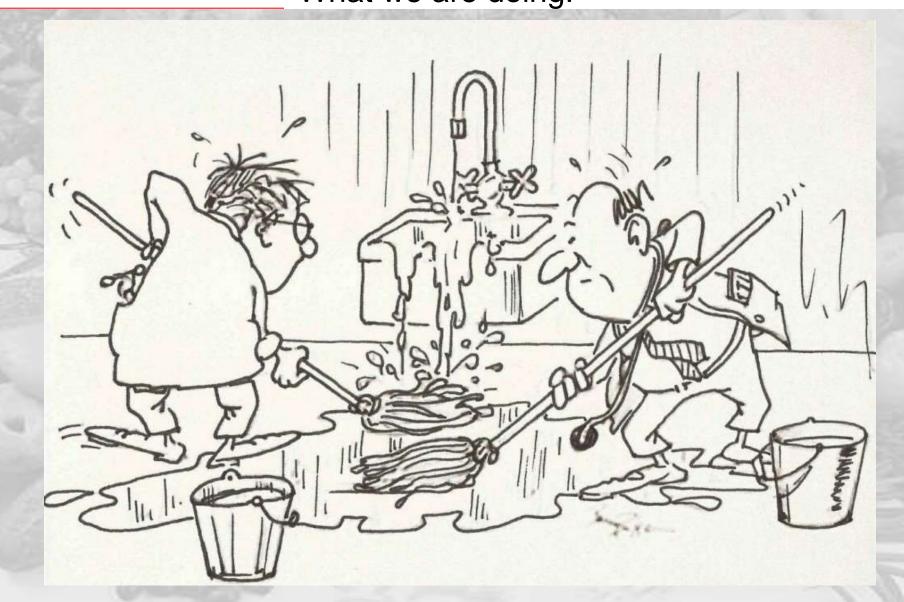
Age (year)

Some findings from the Oriscav Lux Studies

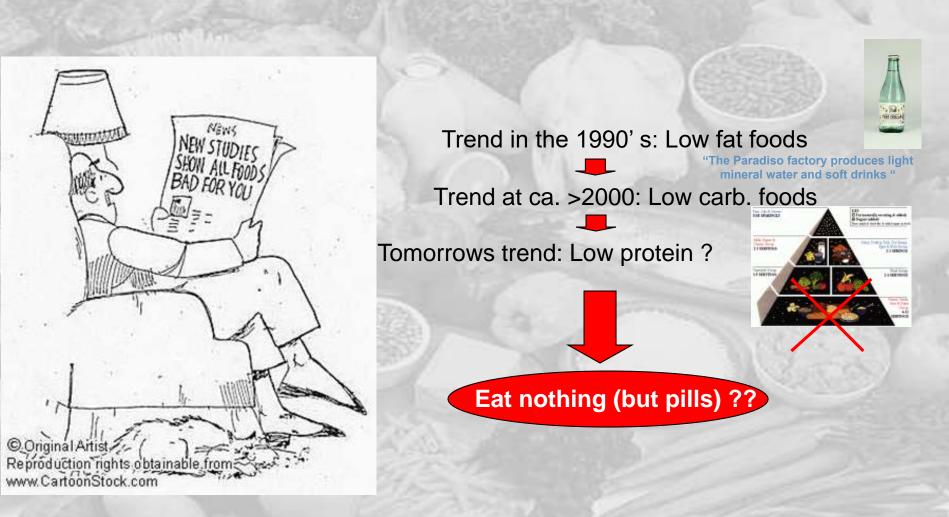
In Luxembourg:

- Prediabetes (26%)
- Overweight (37%)
- Obesity (21%)
- Hypertension (31%)
- Dyslipidaemia (>2/3)
- MetS: ~25%

- Highest meat consumers ww.
 (2007) 137 kg/y!
- Ca. 60%: fiber intake <25/38 g/d
- Salt: >85%: >2 g/d Na
- 40%: < 5/d fruits/vegetables
- Simple sugars: >97% over 10% energy intake



Dietary, behavioural and socio-economic determinants of the metabolic syndrome among adults in Luxembourg: findings from the ORISCAV-LUX study


Ala'a Alkerwi^{1,2,*}, AnneFrançoise Donneau², Nicolas Sauvagect¹, Marie-Lise Lair¹, Adelin Albert² and Michèle Guillaume²

¹Centra de Recherche Public Santé (CRR-Santé), Centre d'Eludes en Santé, Grand-Dochy of Luvenbourg, 1A nue Thomas Eduon, 1-1445 Strassen, Luvenbourg: ²School of Public Health, University of Liège, Liège, Belgium

What we are doing:

Which Macronutrients?

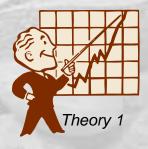
Which dietary recommendations to trust?

Which dietary recommendations to trust?

1 swallow = summer ??

Be careful!

New evidence-pyramide:

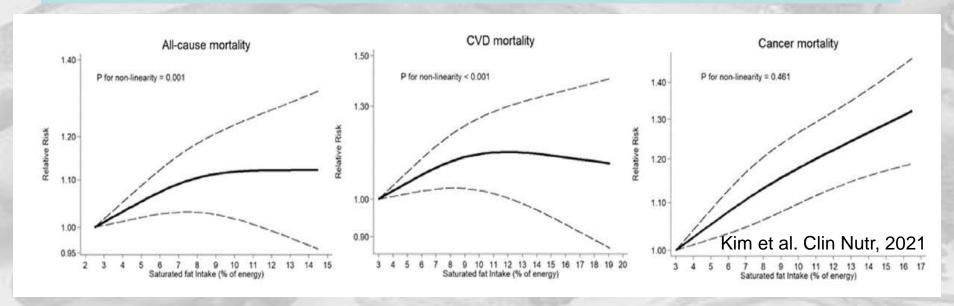


Industry-<u>in</u>dependent competent organizations & national guidelines

The search for the scapegoat...

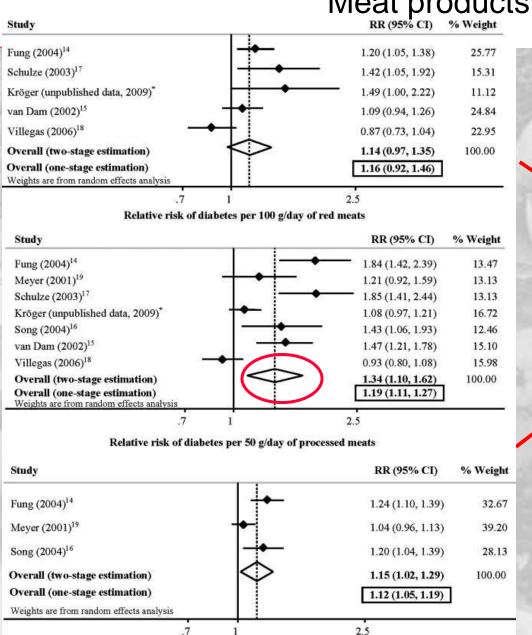
"It is the fats" !!

- ➤ High caloric value : 9.3 kcal/g vs. 4.1 kcal/g (CH, proteins).
- Saturated fats (animal) in tendency unhealthier as unsaturated.
- Many saturated fats also contain cholesterol.


Saturated Fats & Health

19 prospective cohort - studies, n= 1,013,273 participants195,515 deaths

	Highest versus lowest		% of energy in	% of energy increment from fat		
	No. of studies	RR (95% CI)	% of energy	No. of studio	ies RR (95% CI)	
All-cause mortality						
tal fat	8	0.89 (0.81-0.99)	5	6	0.99 (0.98-1.00)	
aturated fat	11	1.03 (0.94-1.13)	5	10	1.02 (1.00-1.05)	


No sign. neg. effects: high vs. low intakes

→ But: high vs. low fraction of energy intake % (dietary patterns).

Inverse Relation: total mortality, CVD, cancer: borderline for mortality

Meat products?

Relative risk of diabetes per 100 g/day of total meats

Meta-analysis: consumption of processed meat (sausage, ham...) & red meat (unprocessed)

Micha, Circulation. 2010 1;121(21):2271-83

And "healthy fats"?

RCT meta-Analysis & CVD mortalityt, 38 studies, n=150.000

				,			
Group by	Trial/Author, Year	Statistics for each study			0000 TOWN - STATES SERVICE		
Subgroup within study		Rate ratio	Lower limit	Upper limit	p-Value	Rate ratio and 95% CI	
EPA	JELIS, 2007	0.93	0.56	1.55	0.79		
	Nosaka et al., 2014	0.20	0.02	1.71	0.14		
	REDUCE-IT, 2018	0.82	0.67	1.00	0.05	_	
		0.82	0.68	0.99	0.04		
PA + DHA	HARP, 1995	0.32	0.01	7.78	0.48		
	SHOT, 1996	1.62	0.47	5-53	0.44		
	GISSI-P, 1999	0.84	0.72	0.98	0.02		
	SCIMO, 1999	0.34	0.01	8.26	0.50		
	OFAMI, 2001	1.00	0.38	2.66	1.00		
	Brox et al., 2001	0.17	0.01	4.09	0.27		
	FAAT, 2005	1.01	0.40	2.54	0.98		
	Raitt et al., 2005	0.40	80.0	2.06	0.27		
	SOFA, 2006	0.46	0.18	1.21	0.12		
	GISSI-HF, 2008	0.93	0.84	1.03	0.15		
	OMEGA, 2009	0.95	0.56	1.59	0.84		
	AlphaOmega, 2010	0.99	0.73	1.34	0.94		
	DO IT, 2010	0.63	0.25	1.64	0.35		
	SU.FOL.OM3, 2010	0.82	0.47	1.42	0.48		
	ORIGIN, 2012	0.98	0.88	1.10	0.78		
	Risk & Prevention, 2013	1.04	0.82	1.32	0.74		
	Shinto et al., 2014	3.00	0.12	73.64	0.50		
	AREDS2, 2014	0.96	0.38	2.41	0.93	-+	
	Derosa et al., 2016	0.34	0.01	8.31	0.51		
	ASCEND, 2018	0.82	0.68	0.99	0.04		
	VITAL, 2018	0.96	0.76	1.21	0.73	: :	
	STRENGTH, 2020	1.08	0.90	1.31	0.40		
		0.94	0.89	0.99	0.02	•	
Overall		0.93	0.88	0.98	0.01	•	

Relative 7% reduced

weight

13.43 0.75 85.83

0.03

12.48

0.35

29.03

1.12

0.34 0.99 22.73 5-49 0.03

0.35

8.63

7% reduced risk

Conclusion:
Light
reduction of
risk for ω-3
FS & CVD
& total
mortality

Strong convincing effects ??

If it is not the fat, what then?

P for interaction = 0.

P = 0%

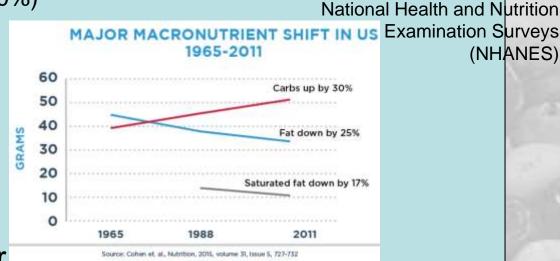
avois omega-3 rA - ravois contr

Dietary Intake Trends (71-2011)

Calorie consumption

1972 kcal → 2173 kcal (ca. 10%)

Fat Intake


 $45\% \rightarrow 34\% \text{ (p<0.01)}$

CH Intake


 $39\% \rightarrow 51\% \text{ (p<0.01)}$

Proteins and dietary fiber

No major change

Sugar consumption!

(NHANES)

However, CH/sugar consumption has stagnated somewhat since 2000...

(Table) sugar causing obesity?

Consumption of sweetened beverages: +135% ↑ (1977 - 2001)

Nielsen SJ, Popkin BM. Am J Prev Med 2004

70

Obesity and high fructose corn syrup

The number of Americans who are obese has quadrupled in recent years, a study shows. At the same time, high fructose corn syrup consumption has risen at parallel rates.

Pounds consumed:
The graph traces
average number of
pounds of high fructose
corn syrup consumed

by Americans each year.

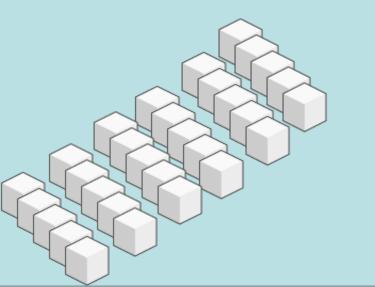
Track the increased percentage of obese Americans age 20 years and older, for available years studied.

35%

Fructose especially critical:

- Blood lipids ↑ (via

- Inflammation ↑


- Satiety ↓

- (V)LDL ↑

Sugar intake (DE): 88

Correlation between type II diabetes incre

GI & GL – "Umbrella Meta-Analysis"

18 MA: prospective cohort-studies: GI &GL: Blood-sugar increase

 Pos. association between GI & T2D risk, CVD, some types of cancer (colorectal, breast, bladder), & GL risk CVD, T2D & stroke.

					10.4.1
Outcome	Number of primary studies	Number of cases	Comparison	Summary relative risk (95%CI)	Quality of evidence (GRADE)
Gallbladder disease	2	7581	High vs low	1.26 (1.11, 1.40)	Low
Bladder cancer	2	1315	High vs low	1.26 (1.08, 1.46)	Low
Type 2 diabetes	15	34,841	Per 10-unit	1.18 (1.07, 1.29)	Low
Coronary heart disease	10	7137	High vs low	1.14 (1.05, 1.24)	Low
Colorectal cancer	12	14,108	High vs low	1.08 (1.01, 1.16)	Low
Breast cancer	11	25,917	High vs low	1.06 (1.01, 1.11)	Low
Stroke	7	3046	High vs low	1.07 (0.97, 1.19)	Low
Prostate cancer	5	15,949	High vs low	0.98 (0.94, 1.03)	Low
Endometrial cancer	7	4011	High vs low	1.00 (0.91, 1.10)	Low
Pancreatic cancer	8	3097	High vs low	1.02 (0.90, 1.16)	Low
Gastric cancer	3	869	High vs low	0.92 (0.57, 1.50)	Very low
Liver cancer	4	984	High vs low	1.04 (0.83, 1.32)	Very low
Renal cell carcinoma	2	1315	High vs low	0.99 (0.81, 1.17)	Very low
All-cause mortality	5	10,768	High vs low	1.10 (0.94, 1.30)	Very low

Individual diseases: up to 25% risk reduction

Jayedi, CrReFdSciNutr, 2021

"Sugar source – sweetened beverages"

MA: 15 studies: 11 cohorts, n=965,851 participants: total mortality

Cohort	Participants	Deaths	HR (95% CI)		
All-cause mortality			194		
Cancer and Leukemia Group B 89803	1011	305	1.15 (0.95, 1.40	3.47	
European Prospective Investigation into Cancer and Nutrition	451,743	41,963	◆ 1.06 (1.02, 1.08	16.88	
Health Professionals Follow-Up Study	37,716	13,004	◆ 1.07 (1.03, 1.10	17.05	
Leisure World Cohort Study	13,624	11,386	1.00 (0.81, 1.23	3.09	
Northern Swedish Health and Disease Study	24,475	2881	1.06 (0.95, 1.19	7.67	
Nurses' Health Study	80,647	23,432	 1.08 (1.05, 1.10 	18.09	
Reasons for Geographic and Racial Differences in Stroke study	13,440	1000	1.06 (0.96, 1.16	9.29	
Singapore Chinese Health Study	52,584	10,029	0.91 (0.80, 1.03	6.48	
UK Biobank	161,415	2311	1.34 (1.20, 1.50	7.61	
Vitamins and Lifestyle study	69,582	4187	1.33 (1.13, 1.56	i) 4.85	
Women's Health Initiative Study	59,614	4437	0.95 (0.82, 1.09	5.53	
Total (F=70.5%, P=0.002)	965,851	114,935	1.08 (1.04, 1.12	100.00	

Per extra beverage (355 mL): mortality (HR: 1.08; 95% CI: 1.04, 1.12)

P for nonlinearity=0.42 Zhang et al., Adv Nutr 2021 1.4 1.3 1.2 1.1 1.0 0.9 0.5 1.0 1.5 2.0 2.5 3.0 0.0 SSB intake, servings/day

Steady increase from small amounts onward! →No safe dose!

EFSA

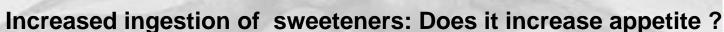
could not be compared. A level of sugars intake at which the risk of dental caries/chronic metabolic diseases is not increased could not be identified over the range of observed intakes, and thus, a UL or a safe level of intake could not be set. Based on available data and related uncertainties, the intake of Opinion: added and free sugars should be as low as possible in the context of a nutritionally adequate diet. Decreasing the intake of added and free sugars would decrease the intake of total sugars to a similar extent. This opinion can assist EU Member States in setting national goals/recommendations.

Non-caloric sweeteners instead of sugars?

A sweet tasting, food approved compound, that does not contain significant calories:

Aspartam (Phenylalanin)

Acesulfam K


Cyclamat

Saccharin

Stevia...

Do they reduce calories?

Healthier??

Rats: yoghurt with sugar or acesulfamK/saccharin Swithers et al. 2009

After 2 Weeks: Significant weight increase!

- Disturbance of glucose metabolism ?
- Altered gut microbiota?
- Stimulation of appetite via unknown mechanisms?

Humans: Long term consequences uncertain, benefit questionable, energy balance: +/-Meta-analyses: no clear direction

Sugar and artificially sweetened beverages linked to obesity: a systematic review and meta-analysis

D. Ruanpeng¹, C. Thongprayoon³, W. Cheungpasitporn⁵ and

How to make it healthy through a day – at home & work?

- CAREER COLUMN Nature
- •16 March 2022
- → Nine 'brain food' tips for "researchers"

1. Find time to snack healthily

Short food breaks:

keep your blood-sugar level reasonably high without surging

- →prevents hunger & over-consumption
- →reduce SB!

1. Find time to snack healthily

Fruits for the office – negotiate!
Replace vending machines
Form a food – council!

Even better: Filtered tap water!

2. Drink enough

Air (AC, heater) can be very dry! →at least 1.5 (2) L per day!

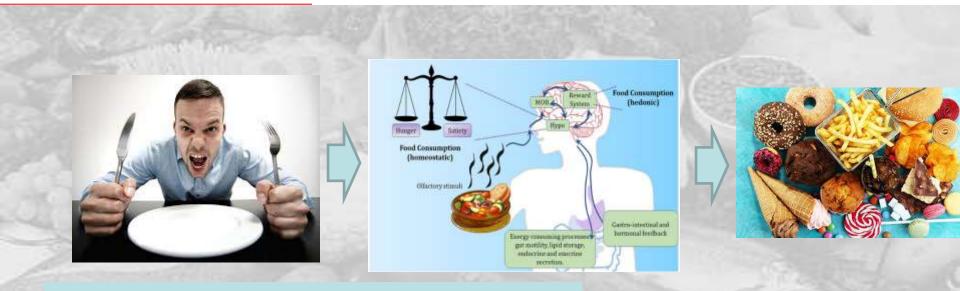
- Blood volume ↑
- **Circulation & mental** concentration ↑
- Tolerance against heat & cold ↑
- Energy expenditure ↑
- Satiety ↑

earlier.

Overall not health detrimental in moderation? Risk for cancer!

3. Put food on your agenda & enjoy

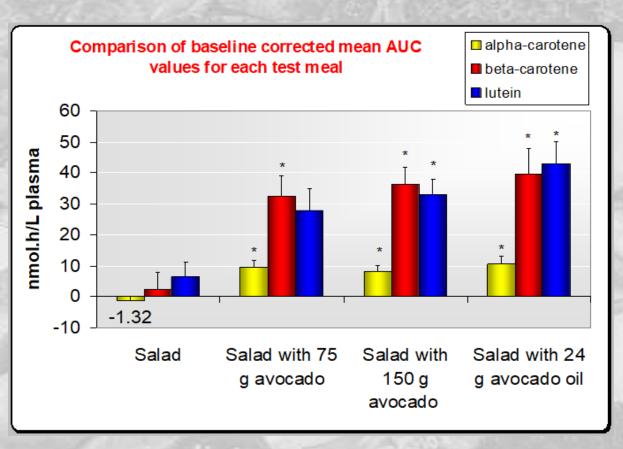
- Schedule regular mealtime in your diary
- Go with your biorythm! Follow your gut!
- Avoid eating too late (in afternoon/evening)
- Eat consciously, take time



Eat slowly to allow body feedback:

4. Plan your meals – think about it

Increase your intake of: low-calorie items, e.g., but diversify:



High satiety
High nutrient density

Fat free dressing or not?

Carotenoid Absorption from Salad and Salsa by Humans Is Enhanced by the Addition of Avocado or Avocado Oil1,2 Nuray Z. Unlu, Torsten Bohn, Steven K. Clinton,* and Steven J. Schwartz³ Department of Food Science and Technology and "Internal Medicine, The Ohio State University, Columbus,

- →A few g fat (5-10 g) needed/meal
- →Improved micellization & chylomicron response

5. Avoid the insulin rollercoaster

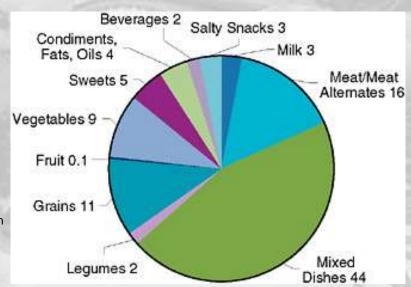
(Ultra-)Processed foods:

- too salty
- too much sugar
- few nutrients
- too many additives

- contributing to chronic disease
- cognitive performance
- low satiety value
- insulin secretion↑ → soon hungry again
- Anti-inflammatory (SCFA↑)
- Cholesterol-lowering
- Slow increase blood-sugar
- Microbiome

6. Scrap the salt

- major killer worldwide
- blood pressure, stroke and other cardiovascular diseases.
- → try pepper, curcuma, nutmeg or other spices to add flavour. Some health beneficial (curcuma...)


the United States, 2010

Blood pressure, CVD

According to most studies (Intersalt...): Intake twice of what is recommended

IOM: Strategies to Reduce Sodium Intake in

6. Scrap the salt

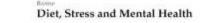
Other aspects – joints, atrthitis – dietary indices

Dietary Inflammatory Index (DII)

ORIGINAL PAPER

CLINICAL PRACTICE WILEY

Association of Dietary Inflammatory Index (DII) with disease activity and inflammatory cytokines in the patients with rheumatoid arthritis


Arash Tandorost¹ | Sorayya Kheirouri¹ | Jalal Moludi² | Seyedmostafa Seyedmardani³

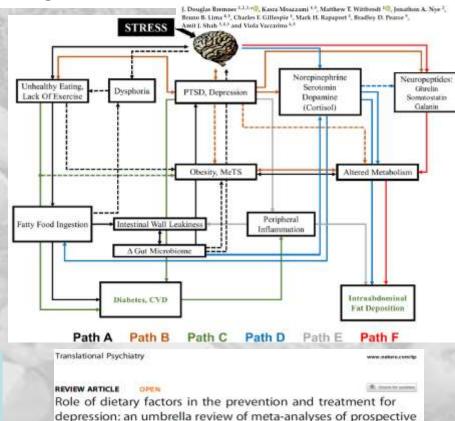
Mean DII score: higher in RA patients vs. controls $(0.66 \pm 0.23 \text{ vs.} -0.58 \pm 0.19)$. Patients with highest DII: sign. higher hs-CRP & TNF & clinical markers, disease activity score (DAS-28) & tender joints.

7 RCTs, 326 participants. Anti-inflammatory diets: significantly lower pain than ordinary diets (-9.22 mm; 95% CI -14.15;-4.29)

Other aspects – stress handling

- PUFAS anti-inflammatory
- Healthy gut microbiota (diversity): fiber
- Antioxidants
- Satiety, balanced diet

Inverse: depression incidence:


healthy diet (RR): 0.74 (0.48-0.99)

fish (RR: 0.88 (0.79–0.97)

coffee (RR: 0.89 (0.84-0.94)

dietary zinc (RR: 0.66 (0.50-0.82),

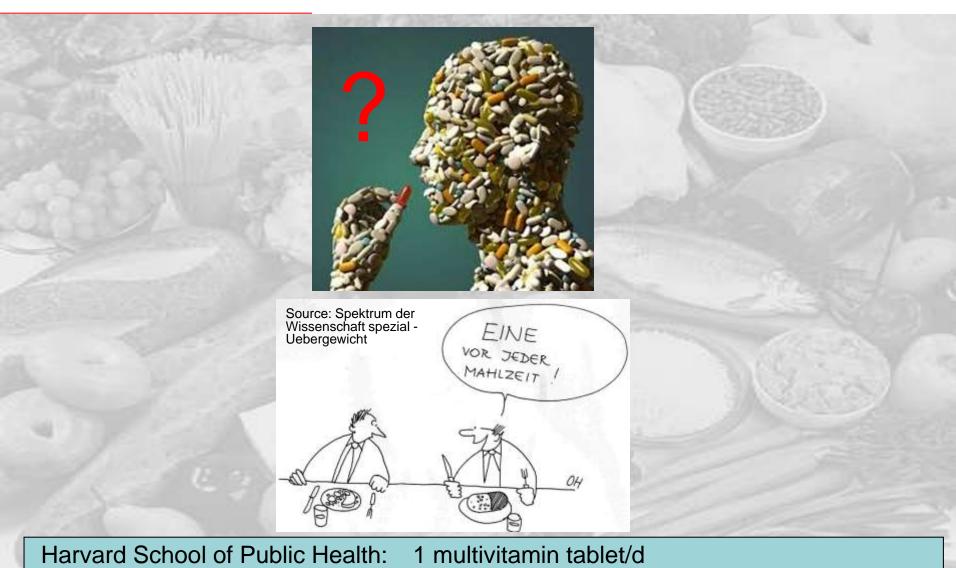
light-mod. alcohol (<40 g/d, RR: 0.77 (0.74-0.83)

Positive association:

SSB (RR: 1.05 (1.01-1.09)

For depression treatment:

probiotics (SMD): -0.31 (-0.56;-0.07)

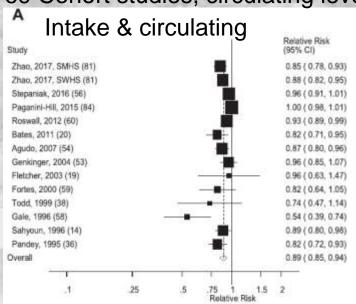

omega-3 PUFA (SMD: -0.28 (-0.47;-0.09)

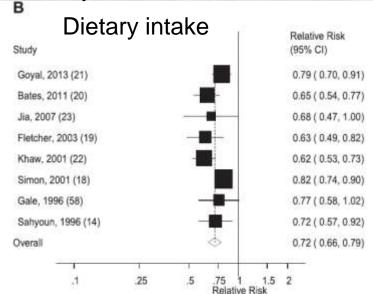
Tujie Xu', Linan Zeng', Kun Zou', Stufang Stan', Xiaoyu Wang'', Jingyuan Kiong', Li Zhao', Lingli Zhang 💇 and Guo Cheng 🕬

acetyl-L-carnitine (SMD: -1.10 (-1.65; -0.56)

V – Food Suppelements – Helpful or Harmful

Do I need those?




lodine (salt) & folic acid (pregnant women) DGE:

V – Food Suppelements – Helpful or Harmful

Meta-Analysis: Individual antioxidants & total mortality

69 Cohort studies, circulating levels & dietary intake of antioxidants & total mortality:

Vit. C

Beta-Car.

Intake of antioxidants from diet: clearly related to lower mortality

Meta-Analysis: Individual antioxidants and total mortality

Beta-carotene Clinical Intervention Trials (Supplements): n=232.000.

Table 5. Intervention Effects of Different Antioxidant Supplements vs Placebo or No Intervention on Mortality

	11			,	
Experimental Antioxidant Supplements	References	No. of Trials	No. of Participants	Random-Effects Model Meta-analysis: Relative Risk (95% Confidence Interval)	Heterogeneity I ² , %
Beta carotene given singly	37, 44, 50, 60, 62, 83	6	40 977	1.06 (1.01-1.11)	5.4
Beta carotene given in combination with other antioxidant supplements	39, 41-44, 54, 59, 62-65, 68, 71-73, 79, 81, 83, 85, 86, 91, 94	22	139 572	1.01 (0.94-1.08)	55.6
Beta carotene given singly or in combination with other antioxidant supplements	37, 39, 41-44, 50, 54, 59, 60, 62-65, 68, 71-73, 79, 81, 83, 85, 86, 91, 94	25	172811	1.01 (0.96-1.08)	52.2
Beta carotene given singly or in combination with other antioxidant	37, 44, 50, 60, 62-64, 71, 73, 83, 85, 94	12	132 610	1.07 (1.02-1.11)	36.8
supplements after exclusion of high-bias risk and selenium trials	-,,-			Bjelakovic, 2007, JAMA 297 Schwingshackl. AdNutr, 201	·

What do you see?

No effect of beta-carotene!

On the contrary: increased risk ?!

Similar: Finnish smoking study!

Similar: vitamin C, vitamin E

Problem:

All due to the 2 large smoking studies:

If removed, no negative effect.

Any guidance – EFSA Health-Claims!

Which health claims have been accepted - examples

"Water-soluble tomato concentrate and platelet aggregation"

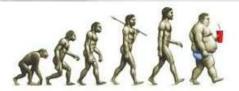
- " Calcium and Vitamin D and Bone Density for Women"

"Vitamin C increases non-her As claims are often barely understandable, an additional explanation may be added.

" EPA and DHA – positive relatio

Which health claims have been rejected - examples

Not a single one on probiotics (LC1...- only B12 related) Taurin and performance (red bull...)


Black Tea and mental Glucosamin and reduction of cartil Soy and reduced risk (

-Lack of evidence/negative evidence -Wrong or absurd concentrations -No food but medication -Unmeasurable outcome (gut health ?)

https://www.efsa.europa.eu/sites/default/files/event/190118-ax.pdf

VI - Overall Summary &

Increase in chronic (civilization) diseases: CVD, T2D, often related to obesity ↔ diet, lifestyle

Macronutrients: too many simple sugars + low dietary fiber

Micronutrients: too much salt!

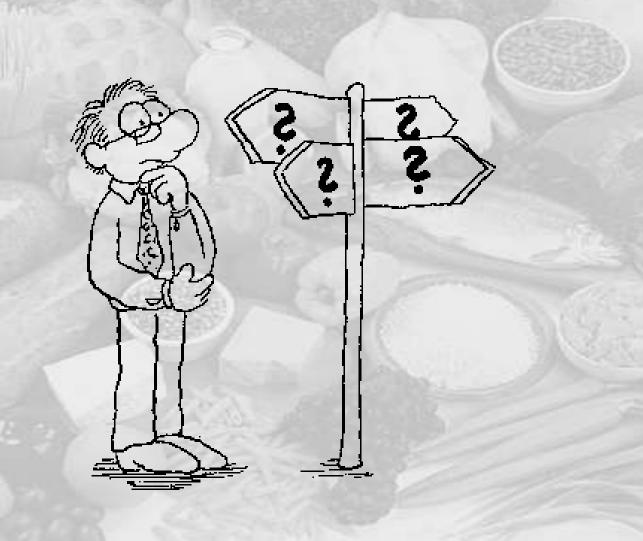
Processed foods: low satiety, low nutrient density

Avoid: too much, too late: Chrononutrition!

Enough: water, fresh food items, healthy fats, well distributed over the day, snacks can be ok,

Individual doses of vitamins, phytochemicals (supplements): no proven health benefit

No replacement for a healthy, balanced diet



Food with most severe side effect?

Merci!!

III - Ernährungsformen/Diäten

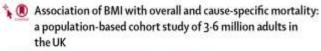
Und Bio-Produkte/"organic foods"?

Wie viele von Ihnen konsumieren Bio-Produkte??

- Weniger Pestizid-Zufuhr
 - Einige Studien: mehr Mineralstoffe
 - Einige Studien: Mehr sekundäre Pflanzenstoffe, ungesattigte Fettsäuren
- Risiko: mehr Mykotoxine: gering (Kontrollen)
 - Risiko: Umweltkontaminanten aus Boden (Hennen, Luft)
 - Teils falsche Etikettierung
 - Höherer Preis

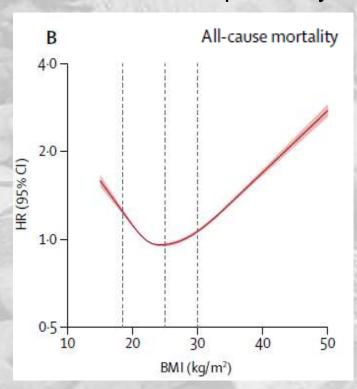
Systamatic Review:

"The current evidence base does not allow a definitive statement on the health benefits of organic dietary intake. However, a growing number of important findings are being reported from observational research linking demonstrable health benefits with organic food consumption.."


Kein direkt nachweisbarer Effekt!!

II – Importance of Healthy Diet

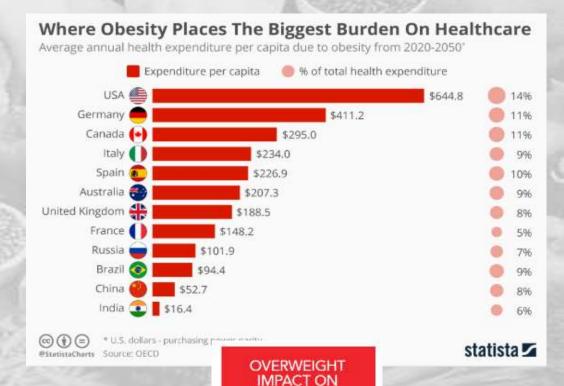
Some consequences



Surrey Menutoismi Euckor

Racinground BMI is known to be strongly associated with all-cause grantality, but few studies have been large enough to rehibly examine associations between BMS and a comprehensive range of cause-specific mertality outcomes.

Shortened life-expectancy



Co-morbidities:

- Type 2 diabetes
- Metabolic syndrome
- Cardiovascular disease
- Cancer...

USA: excess weight \$1.72 trillion (2016): <u>9.3%</u> nationwide GDP (Milken Institute Study).

OECD: 4.4 %

NATIONAL GDP 2035

1.5%

HIGH

At present: 1.4%

45

A word on myself...

II – Importance of Healthy Diet

Some consequences

Costs of low fruit/vegetable consumption in Canada: 3.3 billion Can \$/y Luxembourg: 60 million Euro (Ekwaru et al. Publ Health Nutr 2016)

Costs of not following recommendations for 8 major food groups in

Canada: 13.8 billion Can \$/y

Luxembourg: 250 million Euro (Lieffers, PlosOne, 2018)

Saturated Fats & Health

Former meta-analysis: 1–32 y prospective studies, follow-up:

Outcome	No of studies /comparisons	No of events /participants			Risk ratio (95% CI)			Relative risk (95% CI)	P	P _{het}	(%)
All cause mortalit	ty 5/7	14 090/99 906			-			0.99 (0.91 to 1.09)	0.91	0.17	33
CHD mortality	11/15	2970/101 712			-			1.15 (0.97 to 1.36)	0.10	<0.001	70
CVD mortality	3/5	3792/90 501						0.97 (0.84 to 1.12)	0.69	0.29	19
CHD total	12/17	6383/267 416			-			1.06 (0.95 to 1.17)	0.29	0.02	47
Ischemic stroke	12/15	6226/339 090			_			1.02 (0.90 to 1.15)	0.79	0.002	59
Type 2 diabetes	8/8	8739/237 454			-			0.95 (0.88 to 1.03)	0.20	0.61	0
			0	0.5	1.0	1.5	2.0				
			Satura	ted fats tive		Satura	ated fats harmful	D . C	Souza,	BMJ 201	15

No sign. effects !!
Similar to other studies

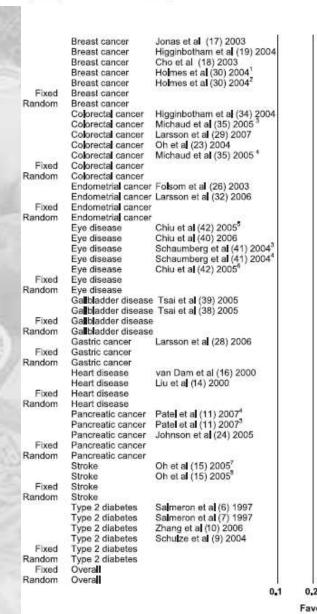
Sugar & Diabetes

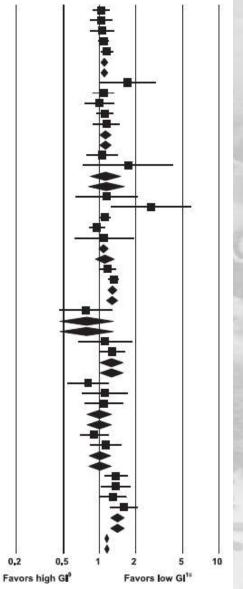
Rate ratio and 95% CI

Glycemic Index, Glycemic Load → Diabetes:

A measure of blood sugar increase after a meal

Meta-Study, observational, 37 prospective cohort studies, n= 40129


GI RR: 1.40 (1.23, 1.59) GL RR: 1.27 (1.12, 1.45)


More diabetes due to consumption of sugar-containing products?

Or do people consuming more sugar have unhealthy diets?

Barclay et al. 2008, AJCN, 87, 627-33

Even for cancer: Long, EJCN, 2021

Sals – CVD – prospective studies

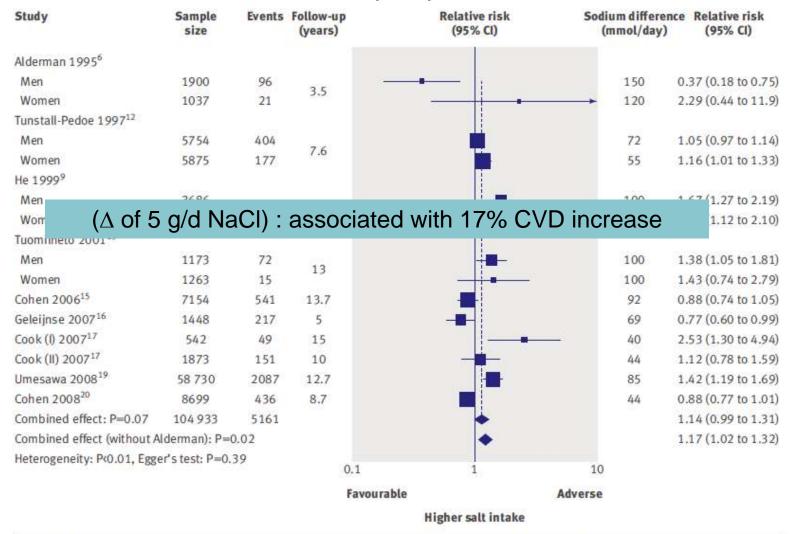


Fig 2 | Risk of incident cardiovascular disease associated with higher compared with lower salt intake in 14 population cohorts from nine published prospective studies including 104 132 participants and 5161 events. Pooled analysis after the exclusion of the study by Alderman et al⁶ (men and women), including 102 086 participants and 5044 events

IV – Practical tips & tricks regarding Diet

Main meals – skipping breakfast ?? → Chrononutrition

1. The time that you eat (early, late)

Morning better than eating too much too late!

2. The time period that you eat (or rather not)

	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAYS	DAY 7
HONIGHT				11			
4AH	FAST	FAST	fAST	FAST	FAST	FAST	FAST
BAH							
12 994	First meal	First resul	First most	fintnui	First mout	First most	First mea
4 PH	Last meal by 8PM	Last meet by 8PM	East meal by 8FM	Last meal by BPM	Last meal by 87H	Last recal by RPM	Last meal by 6PM
229	TAST	FAST	EAST	FAST	FAST	FAST	FAST

DAY 1	DAY 2	DAY 3	DAY-4	DAY 5	DAY 6	DAY 7
Eat mercally	Women: 500 calories Men: 600 calories	Est correctly	Est correctly	Women: 500 culories Men: 600 culories	Est normally	Est normal)

«Intermittent fasting»

«Time restricted eating»

«Eating window»

Some breaks without food may be good, but not if you eat too late!

3. The frequency of your meals (main meals vs. snacking)

Less clear

→ more important what vs.
when you eat!

II – Importance of Healthy Diet

Contribution of Diet to Health (Lifespan) ? – how to measure ?

Ca. 25% of the variation in lifespan (identical) twins: attributable to genetic factors. 3/4 due to non-shared environmental factors!

And the remaining 75%?

Moderate physical activity: **+ 1.4 y** to life-expectancy High levels of physical activity: **+ 3.6 y** to life-expectancy

Even if you start at age 50...

Archives of Internal Medicine 2005;165:2355-2360

Diet: Studies suggest that:

Through healthy diet max. of **3-10 y** additional lifetime may be gained

Of the lifestyle factors, the following are important:

Non-smoking>nutrition=exercise

Or: ca. 25% of lifespan variation explained by nutrition?

And (ultra-)processed foods?

MA: 23 studies (10 cross-sectional, 13 prospective cohort-studies, 3.5-15 y follow-up, Pagali et al. BJN, 2021)

Prospective studies:

of stud	ties n/N		(1						P	I^2 (%)	P_{het}
5	4687/111 056			-			1.25	1-14, 1-37	<0.00001	2	0-40
3	2501/139867	,		-88	H		1-29	1-12, 1-48	0.0003	7	0.34
2	1150/127969	į.		-1	I —		1.34	1-07, 1-68	0.01	32	0.22
2	2995/41 637			-			1.20	1.03, 1.40	0.02	42	0-19
2	2911/20278			=			1.23	1-11, 1-36	< 0.00001	0	0-64
		0-2	0.5	1	2	5					
	5 3 2 2	5 4687/111056 3 2501/139867 2 1150/127969 2 2995/41637	5 4687/111056 3 2501/139867 2 1150/127969 2 2995/41637 2 2911/20278	5 4687/111056 3 2501/139867 2 1150/127969 2 2995/41637 2 2911/20278	5. of studies n/N (random, 95 % 5. 4687/111056 3. 2501/139867 2. 1150/127969 2. 2995/41637 2. 2911/20278	(random, 95 % CI) 5 4687/111 056 3 2501/139 867 2 1150/127 969 2 2995/41 637 2 2911/20278 0-2 0-5 1 2	5. of studies N/N (random, 95 % CI) 5	5. of studies n/N (random, 95 % CI) (random, 95	5. of studies #/N (random, 95 % CI) (random, 95 % CI) 5 4687/111056 3 2501/139 867 2 1150/127969 2 2995/41 637 2 2911/20 278 0-2 0-5 1 2 5	5. of studies n/N (random, 95 % CI) (random, 95 % CI) 5	5. of studies N/N (random, 95 % CI) (random, 95 % CI) P F (%) 5

Cross-secional studies:

Outcome	No. of studies	No. of participants	ê	(1	OR andom, 95%	(CI)			(rando	OR m, 95 % CI)	P	£ (%)	P_{het}
Overweight/obesity (6-9,26)	5	73169							1.39	1.29, 1.50	<0.00001	0	0.47
High WC ^(7,8,24,26)	4	31908			-	-			1.39	1.16, 1.67	0.0003	49	0.12
Hyperglycaemia ^(12,24)	2	1113		-	-		-		1-10	0.34, 3.52	0.87	67	0.08
Hypertri acylglycerolaemia (12,24	2	1113			-	_			0.95	0.60, 1.50	0.82	0	0.84
Low HDL-cholesterol(12,24)	2	1113				-	-		2.02	1-27, 3-21	0.003	0	0-86
Hypertension ^(12,24)	2	1113		-	-	-			1.31	0.50, 3.43	0.58	38	0.20
Metabolic syndrome ^(12,24)	2	1113			-	-			1.79	1.10, 2.90	0.02	0	0-49
			0·2 Decrease	0-5 ed risk	1		2 Increas	5 sed risk					

Higher total mortality & CVD

Salt?
Calories?
Dieter fiber?
Structure, satiety?
Vitamins, minerals?

Also carbohydrates: dietary fiber (pectins, inulin, res. starch...)

- Anti-inflammatory (SCFA[↑])
- Cholesterol-lowering
- Slow increase blood-sugar
- Microbiome

Umbrella-review of MA (Veronese, AJCN, 2018): 18 MA, 298 prospective observational studies:

Outcome (reference)	Population	Study design included in MA	Level of comparison	Studies,	Participants, n	Cases, n	Type of effect size metric	Effect size (95% CI)
Prospective studies								
CVD mortality (40)	General	Prospective	Highest vs. lowest category	10	806,561	52,582	RR	0.818 (0.778, 0.861)
All-cause mortality (38)	Mixed	Prospective	Highest vs. lowest category	19	982,393	67,019	RR	0.835 (0.797, 0.875)
CVD (41)	Mixed	Prospective	Continuous (increase of 7 g/d)	22	2,165,830	25,461	RR	0.913 (0.893, 0.932)
Type 2 diabetes (35)	Not reported	Prospective	Highest vs. lowest category	12	359,167	14,065	RR	0.812 (0.730, 0.903)
Stroke (33)	Not reported	Prospective	Highest vs. lowest category	14	325,707	9676	RR	0.828 (0.740, 0.926)
Coronary artery disease (31)	Not reported	Prospective	Highest vs. lowest category	25	461,187	8591	RR	0.932 (0.906, 0.958)
Cancer mortality (45)	General	Prospective	Highest vs. lowest	3	920,055	22,954	RR	0.867 (0.770, 0.981)

Similar to other studies: strong pos. effects of dietery fiber! (despite some diverging effects of various dietary fibers)

Example - Polyphenols, Antioxidants

Polyphenols: strong antioxidants in vitro. Should act as antioxidants in vivo.

Or not ...???

1. Before bioactivity, there must be bioavailability...

Many polyphenols are:

- poorly absorbed
- heavily metabolise
- rapidly excreted

In short: low bioavailability!!

2. The entire picture is imporants. There are other "players" determining antioxidant capacity in the body:

Enzymes: SOD, GPX, catalase...

Endogenous antioxidants: Glutathion, uric acid, albumin...

Other exogenous antioxidants: Vit. C, Vit. E, Carotenoids...

Some are even health deterimental: carotenoids, smokers!

Meta-Analysis: Individual antioxidants & total mortality

Vit. C: Clinical intervention trials – <u>pure vitamin C (n=170,000)</u>

Vitamin C given singly	48, 62, 80	3	826	0.88 (0.32-2.42)	0
Vitamin C given in combination with other antioxidant supplements	36, 38, 39, 41-45, 51, 52, 54, 57, 59, 62-65, 68, 71-73, 75, 76, 79-81, 84, 86, 91, 92, 98, 100, 101	33	69 997	0.97 (0.88-1.07)	22.1
Vitamin C given singly or in combination with other antioxidant supplements	36, 38, 39, 41-45, 48, 51, 52, 54, 57, 59, 62-65, 68, 71-73, 75, 76, 79-81, 84, 86, 91, 92, 98, 100, 101	34	70 456	0.97 (0.88-1.06)	19.4
Vitamin C given singly or in	44, 45, 62-64, 71, 73, 75, 76,	13	29 275	1.06 (0.94-1.20)	10.3
combination with other antioxidant supplements after exclusion of high-bias risk and selenium trials	80, 92, 98, 100			Bjelakovic, 2007, JAN Schwingshackl. AdNu	•

What do you see?

No effect of vitamin C

Similar effects of many other individual compounds:

- No or very limited effects,
- Or only in certain risk-groups or those with a poor nutritional status.